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Abstract. We study a one-dimensional tight binding model with a random potential taking 
!YO w!"cs *g, wi!h !!!e restriaian that a:: paix of :";a neighboufing &e8 :he po:c::!ia!. 
take the same value. This random dimer model, proposed by Dunlap, Phillips and Wu, 
has a vanishing Lyapunov exponent for the energy E = +U. We compute the Lyapunov 
exponent and the density of states perturbatively in the vicinity of this energy using the 
invariant measure formalism. 

1. Introduction 

In a series of recent articles Dunlap et al [ I ,  21 have considered a number of one- 
dimensional disordered tight-binding models which exhibit some exceptional and 
maybe surprising features; in particular, they may have extended states at particular 
energies. These models may serve to explain the properties of certain one-dimensional 
conductors such as polyaniline. Apart from these direct physical applications, the 
analysis of these models shows that even in the context of one-dimensional discrete 
random Schrodinger operators, there are still a lot of interesting phenomena to discover, 
which are not immediately covered by the general results. In this note we consider the 
simplest of the models proposed by Dunlap et al the random dimer model [l] using 
methods of the invariant measure and perturbation theory from [3] and [4]. This will 
allow us to calculate more precisely the Lyapunov exponent and the density of states 

developed for the standard Anderson model [ 5 ] ,  are really powerful tools to investigate 
these more exotic situations. 

Let us first define the random dimer model and give a qualitative review of its main 
features. The Hamiltonian of this model is given as 

near the exceptional energies, !tis our purpose to i!!ustrate that !hese me!hods, a!tho!!gh 

H = - A + V  (1.1) 
on iQj, where ir is the (oii-aiagonaij discrete iapiacian, i.e. 

( - A u ) ( ~ )  = u(n+  1)+ u ( n  - 1) 

and V is a diagonal matrix whose entries U,, are given by 

V 2 k  = UEk Y k + l =  UEk (1.2) 
where the sk are independent, identically, distributed random variables, taking the 
values +1 and -1 with, say, equal probability f .  The binary nature of the random 

t More generally, we might consider the case where zk taker the values I and p / ( p -  I) with probability p 
and ( I  - p ) ,  respectively. 
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variable E* is crucial and we will exhibit the effect of smoothening of the distribution 
later in some detail. 

As usual, the associated Schrodinger equation can be written in first-order vector 
form as 

with 

P ( E A = (  E-U ] -1 o ) .  

The solution of the Schrodinger equation with initial data (+(O),g(-l)) is then 
written as 

Due to our choice of U,, the product appearing in (1.5) can be expressed for n even 
or n odd as, 

(1.6) 

Dunlap et a/ noted that for E = U (and similarly for E = -U), the two matrices appearing 
in the product are 

P (  U, = P(2u, 0l2 and P ( U , U ) ~ = P ( O , O ) ~ =  -U. (1.7) 

Therefore, for this energy, the product of matrices trivializes to 
I n P(U, U&,)'= -I'+'+slp(2u, 0)2('+I-St) (1.8) 

k=O 

where SI = E, .  For 1201 s 2 ,  P(2u, 0 )  has two eigenvalues of modulus one, implying 
that there exists a bounded solution of the Schrodinger equation for this energy. For 
1201 > 2, the two eigenvalues are real, one of them being larger, the other smaller than 
one, and no bounded solution exists. 

While one extended state will not have a significant influence on the transport 
properties of this model, it is argued in [2] that in a finite sample of length N, a number 
of states proportional to fl will have a localization length superior t o  the sample 
size and thus contribute to transport. To make these claims more precise, we must 
therefore observe the behaviour of the Lyapunov exponent (inverse localization length) 
and the density of states in the vicinity of E =*U. We propose to do this here using 
perturbation theory for the invariant measure developed in [3, 41. This will allow us 
to calculate systematically an expansion in powers of (E  - 2 0 )  for the density of states 
and Lyaponov exponent. We shall show that for 2u < 2, the Lyaponov exponent behaves 
like (E -U)*, while for U =  1 it shows a behaviour with leading term (E-1) [l]. 
As the density of states will be seen to behave like c + c ' ( E - Z u )  and c + ~ ' l E - l ( ' ' ~ ,  
respectively, the predictions of [ 11 will be confirmed in both cases. 
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2. The invariant measure 

Let @E(n) denote the solution of the Schrodinger equation with energy E. We put 
rk = J I E ( k ) / J I E ( k  - 1). The projective variables rk satisfy the recursive equation 

The complex Lyapunov exponent +{E,  U )  is then defined as 

1 "  
+( E, U) = lim - 1 In( rk) 

"-= n x = ,  

where the complex logarithm is chosen such that In(-x)=i.rr+lnx, if x is real and 
positive. +(E,  U) is then related to the density of states N ( E ,  U) and the Lyapunov 
exponent y ( E ,  U) by (see e.g. [6]) 

+ ( E , u ) = y ( E ,  u)+ i rN(E ,  U ) .  (2.3) 

Contrary to the situation in the standard Anderson model, the rk here do not form 

(2.4) 

and since are i.i.d. random variables form a Markov chain. We denote by vE," an 
invariant measure with respect to this process, i.e. a measure such that for all measurable 
functions f 

a Markov chain; however, if we put xk = r,,, then these satisfy 
2 

%+I = T E , " ~ * ( X X )  

J f(x)%u(dX) =Ez f(&,.(X))%,o(dX). (2.5) 

As a consequence of Furstenberg's theorem [7], this measure will be unique, except 
when E = 2 cos .rra with a rational and v = 0 or U =*E.  To express the complex 
Lyapunov exponent in terms of this invariant measure, we rewrite it as 

J 

1 "  
+ ( E ,  U) = lim - n-2n [In(r2k)+ln(r2h-l)l 

Therefore 

This formula allows us to calculate the density of states and Lyapunov exponent in 
our model from the invariant measure 

To compute this invariant measure, let us assume that it has a density, &,.Equation 
(2:5) yields the following equation for 4: 

;[Ti+"+ T ~ - U I ~ E . U ( ~ ) =  (2.8) 

where 
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Note that Ti= 1 and that therefore, for E = *U, (2.8) takes the simple form 

T:Z~+*~ .Y(X)  = ++,,(x). (2.10) 

Thus, the invariant measure at these enefgies is exactly that of the free Laplacian at 
the energy L? = 1 2 u .  If L? is of the form E = 2 cos a ~ ,  a irrational, then T& = 4 has 
the unique solution 

Thus for E =*U, U = cos a11 (note this implies IuI < l!)  with irrational a, then 

1 -  
4*"."b)=- 2 2x x -2ux+l '  

(2.11) 

(2.12) 

In the case U = cos av with a = p / q ,  equation (2.10) does not have a unique solution, 
however, one can show easily that the one given by (2.12) is still appropriate. 

If Iu (>  1,  the situation changes in that now the invariant measure does no longer 
have a density. Instead, we get 

U"," =&+,,I (2.13) 

where 

x+(u) = U +n. 
We may now compute, for E = U, the Lyapunov exponent using (2.7). We get, for \ U \ <  1,  

d x  
J1-v2 

4 211 xz - 2ux + 1 

and thus 

and 

N ( u , u ) = - + -  

For I I J  3 1 we have simply 

3i 71 
?(U, u)=-+ln/x+(u)/ 

4 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

We recover thus the vanishing of the Lyapunov exponent if Iu /  S 1, whereas for 
\ U /  > 1 it is always positive. In the next section we will derive the perturbation expansion 
around this exceptional energy. 

3. Perturbation theory for IuIC 1 

In this section we derive the perturbation expansion for the invariant measure, and 
consequently the Lyapunov exponent and the density of states, about the energy E = U. 
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The ideas follow closely those developed in [3] and [4] for the perturbation expansion 
in the standard Anderson model (the perturbation there being the small random 
potential), and the reader may find it useful to consult these references for supplemen- 
tary details. 

We put E = u + E ,  with / E J c <  1.  Wt: may then write (2.8) as 

(3.1) 

L? fixed, and to 
has an asymptotic 

2 (T2"+= - 1)+"+&) = (1 - Tt)rb",,"(X) 

the idea being that (1 - T i )  is 'small'. It is convenient to set 2 u +  E 

expand only in the E on the right-hand side of (3.1). Then, if 
expansion of the form 

(3.2) 

the coefficients +g) satisfy the equations 

where we have used that T, =e-rd'dxTo. The system of equations (3.4) can now he 
solved recursively, provided we can invert ( T i  - 1). Assuming L? irrationalt this can 
conveniently he done by expanding rbg! in a basis of eigenfunctions of TA.  It is 
somewhat advantageous to do this by changing variables from x E IR to 0 E S, ,  via 

sin(O+?ra) - 
where 2 cos m = E. X =  

sin f7 (3.5) 

Note that this entails 

d d sin'f7 
dx  df7sinim 

and 

TA+T, :  T,h( 8)  = h(  0 - rra) 

Note that also 

1 
+gl(x) dx+-dO. 

71 

We set h(f7) df7 5 &(x)  dx. Equation (3.4) then becomes 

If we now expand h in its Fourier series via 

t If E is rational we can easily modify the expansion to accommodate this energy too 
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we obtain 

(3.8) 

where D and M are matrices with entries 

and 

(3.10) e-2inn -2&",11. im el in= 
%I =-[sm,l+l +S+1 2 

Note that as in previous examples [4] the structure of these equations is such that 

i'"'(m) = o for Im/ > n. 
Equations (3.8) are now trivial to resolve. We will only use the first two orders here 
which are given explicitly by 

t"'(m) = 

i"'(0) = 0 
(3.11) 

or 

cos(2 e + 3 Ira) 
2 ? r s i n 2 m  ' 

h"'( 8 )  = 

We now use these results to compute the Lyapunov exponent and the density of 
states to second order in E. Consider first the Lyapunov exponent. From (2.7) we obtain 

+a Inlxl(l+T&$,+,,(x) d x - I + I I .  (3.12) 

Note that by putting y =-, we get 1x1 =y(x) /y(E - l /x) ,  so that the second 
term in (3.12) may be written as 

1 

(3.13) 
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The first term becomes 

We expand now everything in E and keep only terms u p  to order .e2. This gives 

and 

d 
4 ‘1 dx 

II = - E -  In y(x) - ( 1  +xz)q5g)(x) 

+ [ z dx2 x z + l  2 K+l( dx’ 2 dx x2) +Z’(x)) dx. 

(3 .15)  

(3.16) 

4:) and r$“’ are known, so that the terms in (3.15), (3.16) can be computed 
explicitly. As could be expected, the terms proportional to E sum to zero, and some 
lengthy but straightforward calculations show that 

) + o(2). 20 cos 21101-9 sin 3 ~ 0 1 ( 4  sin2 7101 + 1 )  
32 sin2 ?ra 32 sin’ mr 

- y ( u +  E, U )  = E 2  (3.17) 

This computation confirms the claim by Phillips et a/ [ l ]  that the Lyapunov exponent 
vanishes quadratically. 

For the density of states we obtain similarly that 

dx((1f T,)+( l+  Tk))40+F,u(x) 

= N ( u + E ,  U +  E ) + +  d x ( l +  Tg)(r$u+z,u -4y) lom 
+?,Jumdx(T.+T,)4,+,,.. (3.18) 

We compute only the terms up to order E explicitly. Using (3.11),  one finds that 

Ium ( 1  + T~)c$;’(x) dx = O  

and thus 

N ( u + E ,  u ) = N ( u + & ,  U + E ) - E ~ J T - T ; ~ + O ( E ’ )  
27r 

3 1  cos-‘ U +- E - (2-u2)+0(E2) =-_- 
4 211 411 J1-v2 (3.19) 
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Thus, we see that in spite of the vanishing of the Lyapunov exponent, the density 
of states behaves at this energy in a completely regular way. This is in strong contrast 
to, for example, the model with off-diagonal disorder [SI, where the vanishing of the 
Lyaponov exponent at the band centre is accompanied by a divergence of the differenti- 
ated density of state. 

Of course, as one would expect, this behaviour is somewhat altered as U approaches 
il; in fact, a divergence appears in (3.17) and (3.19). But taking into account that for 
i?=2-r, a=cos~' (u--8/2)=&, one finds that in fact 

3 6  N(1 - E ,  1) =-+-+ O(E) 
4 2rr 

(3.20) 

and 

E 
? ( I - € ,  1) =-+ o ( E 2 ) .  (3.21) 

Notice that in all cases the above formulas show that the number of states in an 
energy interval around E = U for which y s  6 is proportional to a. Thus, for a finite 
system the number of states for which the localization length exceeds the size, L, of 
the system is proportional to L'I2, as argued in [I]. 

4n 

4. Conclusions 

.the random dimer modei provides a simpie exampie for a disordered one-dimensionai 
tight binding model where at an exceptional energy the localization length diverges. 
We have shown here the perturbation theory involving the invariant measure provides 
a useful tool to compute precisely the behaviour of the Lyapunov exponent and the 
density of states near this exceptional point. The results obtained support the argument 
of Dunlap e! a1 [2] for an anomalous finite-size conductance at these energies since 

states are extended over the entire sample of size N. Still, a more refined analysis 
of the transport properties remains desirable. 

We would like to stress that the particular properties of this model depend crucially 
on the fact that the potential can take on only two values. Any modification of the 
potential distribution enlarging its support will render the Lyapunov exponent strictly 
positive. For distributions that are small perturbations of the binary distribution treated 
here !e.g. two carrow Gaussian9 concentrated near * U ) ?  the genera! perturbative 
framework laid out above may of course be used to compute this effect. 

The model considered here may be generalized in many directions. The general 
strategy would be to consider several allowed patterns ('words') of potentials over 
blocks of size, say n, and to distribute these words at random over the lattice. For 
appropriate choices of those words, one may achieve that the corresponding transfer 
matrices all commute at certain energies (the larger the blocks, the richer this set of 
energies can be made) what may allow for a vanishing of the Lyapunov exponent at 
these points. A particularly interesting scenario may arise if those blocks are taken as 
finite pieces of quasiperiodic structures; the resulting models then interpolate between 
random and quasiperiodic models. An analysis of this situation is in progress. 

- 
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